Specification


Import

from free_range_zoo.envs import wildfire_v0

Actions

Discrete & Stochastic

Observations

Discrete and fully Observed with private observations

Parallel API

Yes

Manual Control

No

Agent Names

[\(firefighter\)_0, …, \(firefighter\)_n]

# Agents

[0, \(n_{firefighters}\)]

Action Shape

(\(envs\), 2)

Action Values

[\(fight_0\), …, \(fight_{tasks}\), \(noop\) (-1)]

Observation Shape

TensorDict: {
self: \(<ypos, xpos, fire power, suppressant>\)
others: \(<ypos,xpos,fire power, suppressant>\)
tasks: \(<y, x, fire level, intensity>\)
batch_size: \(num\_envs\) }

Observation Values

self:
\(ypos\): \([0, max_y]\)
\(xpos\): \([0, max_x]\)
\(fire\_power\_reduction\): \([0, max_{fire\_power\_reduction}]\)
\(suppressant\): \([0, max_{suppressant}]\)
others:
\(ypos\): \([0, max_y]\)
\(xpos\): \([0, max_x]\)
\(fire\_power\_reduction\): \([0, max_{fire\_power\_reduction}]\)
\(suppressant\): \([0, max_{suppressant}]\)
tasks
\(ypos\): \([0, max_y]\)
\(xpos\): \([0, max_x]\)
\(fire\_level\): \([0, max_{fire\_level}]\)
\(intensity\): \([0, num_{fire\_states}]\)


Usage

Parallel API

from free_range_zoo.envs import wildfire_v0

main_logger = logging.getLogger(__name__)

# Initialize and reset environment to initial state
env = wildfire_v0.parallel_env(render_mode="human")
observations, infos = env.reset()

# Initialize agents and give initial observations
agents = []

cumulative_rewards = {agent: 0 for agent in env.agents}

current_step = 0
while not torch.all(env.finished):
    agent_actions = {
        agent_name: torch.stack([agents[agent_name].act()])
        for agent_name in env.agents
    }  # Policy action determination here

    observations, rewards, terminations, truncations, infos = env.step(agent_actions)
    rewards = {agent_name: rewards[agent_name].item() for agent_name in env.agents}

    for agent_name, agent in agents.items():
        agent.observe(observations[agent_name][0])  # Policy observation processing here
        cumulative_rewards[agent_name] += rewards[agent_name]

    main_logger.info(f"Step {current_step}: {rewards}")
    current_step += 1

env.close()

AEC API

from free_range_zoo.envs import wildfire_v0

main_logger = logging.getLogger(__name__)

# Initialize and reset environment to initial state
env = wildfire_v0.parallel_env(render_mode="human")
observations, infos = env.reset()

# Initialize agents and give initial observations
agents = []

cumulative_rewards = {agent: 0 for agent in env.agents}

current_step = 0
while not torch.all(env.finished):
    for agent in env.agent_iter():
        observations, rewards, terminations, truncations, infos = env.last()

        # Policy action determination here
        action = env.action_space(agent).sample()

        env.step(action)

    rewards = {agent: rewards[agent].item() for agent in env.agents}
    cumulative_rewards[agent] += rewards[agent]

    current_step += 1
    main_logger.info(f"Step {current_step}: {rewards}")

env.close()

Configuration

class free_range_zoo.envs.wildfire.env.structures.configuration.AgentConfiguration(agents: torch.IntTensor, fire_reduction_power: torch.FloatTensor, attack_range: torch.Tensor, suppressant_states: int, initial_suppressant: int, suppressant_decrease_probability: float, suppressant_refill_probability: float, initial_equipment_state: int, equipment_states: torch.FlaotTensor, repair_probability: float, degrade_probability: float, critical_error_probability: float, initial_capacity: int, tank_switch_probability: float, possible_capacities: torch.Tensor, capacity_probabilities: torch.Tensor)[source]

Setting for configuring agent properties in the environment.

Variables:
  • agents (torch.IntTensor) – torch.IntTensor - Tensor representing the location of each agent

  • fire_reduction_power (torch.FloatTensor) – torch.FloatTensor - Power of each agent to reduce the fire intensity

  • attack_range (torch.Tensor) – torch.Tensor - Range of attack for each agent

  • suppressant_states (int) – int - Number of suppressant states

  • initial_suppressant (int) – int - Initial suppressant value for each agent

  • suppressant_decrease_probability (float) – float - Probability of suppressant decrease

  • suppressant_refill_probability (float) – float - Probability of suppressant refill

  • intial_equipment_state – int - Initial equipment state for each agent

  • equipment_states (torch.FlaotTensor) – torch.FloatTensor - Definition of equipment states modifiers in the form of (capacity, power, range)

  • repair_probability (float) – float - Probability that an agent get their repaired equipment once fully damaged

  • degrade_probability (float) – float - Probability that an agent’s tank will degrade

  • critical_error_probability (float) – float - Probability that an agent at full will suffer a critical error

  • tank_switch_probability (float) – float - Probability that an agent will be supplied with a different tank on refill

  • possible_capacities (torch.Tensor) – torch.Tensor - Possible maximum suppressant values

  • capacity_probabilities (torch.Tensor) – torch.Tensor - Probability that each suppressant maximum is chosen

class free_range_zoo.envs.wildfire.env.structures.configuration.FireConfiguration(fire_types: IntTensor, num_fire_states: int, lit: Tensor, intensity_increase_probability: float, intensity_decrease_probability: float, extra_power_decrease_bonus: float, burnout_probability: float, base_spread_rate: float, max_spread_rate: float, random_ignition_probability: float, cell_size: float, wind_direction: float, ignition_temp: IntTensor, initial_fuel: int)[source]

Setting for configuring fire properties in the environment.

Variables:
  • fire_types (torch.IntTensor) – torch.IntTensor - Required attack power in order to extinguish the fire

  • num_fire_states (int) – int - Number of fire states

  • lit (torch.Tensor) – torch.IntTensor - Tensor representing the initially lit tiles

  • intensity_increase_probability (float) – float - Probability of fire intensity increase

  • intensity_decrease_probability (float) – float - Probability of fire intensity decrease

  • extra_power_decrease_bonus (float) – float - Additional decrease bonus per extra power

  • burnout_probability (float) – float - Probability of fire burnout

  • base_spread_rate (float) – float - Base spread rate of the fire

  • max_spread_rate (float) – float - Maximum spread rate of the fire

  • random_ignition_probability (float) – float - Probability of random ignition

  • cell_size (float) – float - Size of each cell

  • wind_direction (float) – float - Direction of the wind (radians)

  • ignition_temp (torch.IntTensor) – torch.IntTensor - Initial intensity of each fire once ignited

  • initial_fuel (int) – int - Initial fuel value of each cell in the grid, controls the number of re-ignitions

class free_range_zoo.envs.wildfire.env.structures.configuration.RewardConfiguration(fire_rewards: FloatTensor, bad_attack_penalty: float, burnout_penalty: float, termination_reward: float)[source]

Settings for configuring the reward function.

Variables:
  • fire_rewards (torch.FloatTensor) – torch.FloatTensor - Reward for extinguishing a fire

  • bad_attack_penalty (float) – float - Penalty for attacking a tile that is not on fire

  • burnout_penalty (float) – float - Penalty for attacking a burned out fire

  • termination_reward (float) – float - Reward for terminating the environment

class free_range_zoo.envs.wildfire.env.structures.configuration.StochasticConfiguration(special_burnout_probability: bool, suppressant_refill: bool, suppressant_decrease: bool, tank_switch: bool, critical_error: bool, degrade: bool, repair: bool, fire_increase: bool, fire_decrease: bool, fire_spread: bool, realistic_fire_spread: bool, random_fire_ignition: bool, fire_fuel: bool)[source]

Configuration for the stochastic elements of the environment.

Variables:
  • special_burnout_probability (bool) – bool - Whether to use special burnout probabilities

  • suppressant_refill (bool) – bool - Whether suppressants refill stochastically

  • suppressant_decrease (bool) – bool - Whether suppressants decrease stochastically

  • tank_switch (bool) – bool - Whether to use stochastic tank switching

  • critical_error (bool) – bool - Whether equipment state can have a critical error

  • degrade (bool) – bool - Whether equipment state stochastically degrades

  • repair (bool) – bool - Whether equipment state stochastically repairs

  • fire_decrease (bool) – bool - Whether fires decrease stochastically

  • fire_increase (bool) – bool - Whether fires increase stochastically

  • fire_spread (bool) – bool - Whether fires spread

  • realistic_fire_spread (bool) – bool - Whether fires spread realistically

  • random_fire_ignition (bool) – bool - Whether fires can ignite randomly

  • fire_fuel (bool) – bool - Whether fires consume fuel and have limited ignitions

class free_range_zoo.envs.wildfire.env.structures.configuration.WildfireConfiguration(grid_width: int, grid_height: int, fire_config: FireConfiguration, agent_config: AgentConfiguration, reward_config: RewardConfiguration, stochastic_config: StochasticConfiguration)[source]

Configuration for the wildfire environment.

Variables:
  • grid_width (int) – int - Width of the grid

  • grid_height (int) – int - Height of the grid

  • fire_configuration – FireConfiguration - Configuration for the fire properties

  • agent_configuration – AgentConfiguration - Configuration for the agent properties

  • reward_configuration – RewardConfiguration - Configuration for the environment rewards

  • stochastic_configuration – StochasticConf - Configuration for the stochastic elements


API

class free_range_zoo.envs.wildfire.env.wildfire.env(wrappers: List[Callable], **kwargs)[source]

AEC wrapped version of the wildfire environment.

Parameters:

wrappers – List[Callable[[BatchedAECEnv], BatchedAECEnv]] - the wrappers to apply to the environment

Returns:

BatchedAECEnv – the AEC wrapped wildfire environment

class free_range_zoo.envs.wildfire.env.wildfire.raw_env(*args, observe_other_suppressant: bool = False, observe_other_power: bool = False, show_bad_actions: bool = False, **kwargs)[source]

Environment definition for the wildfire environment.

Initialize the Wildfire environment.

Parameters:
  • observe_others_suppressant – bool - whether to observe the suppressant of other agents

  • observe_other_power – bool - whether to observe the power of other agents

  • show_bad_actions – bool - whether to show bad actions